厭氧生物處理作為利用厭氧性微生物的代謝特性,在毋需提供外源能量的條件下,以被還原有機物作為受氫體,同時產生有能源價值的甲烷氣體。厭氧生物處理法不僅適用於高濃度有機廢水,進水BOD最高濃度可達數萬mg/l,也可適用於低濃度有機廢水,如城市污水等。
厭氧生物處理過程能耗低;有機容積負荷高,一般為5-10kgCOD/m3.d,最高的可達30-50kgCOD/m3.d;剩餘污泥量少;厭氧菌對營養需求低、耐毒性強、可降解的有機物分子量高;耐沖擊負荷能力強;產出的沼氣是一種清潔能源。
在全社會提倡循環經濟,關註工業廢棄物實施資源化再生利用的今天,厭氧生物處理顯然是能夠使污水資源化的優選工藝。近年來,污水厭氧處理工藝發展十分迅速,各種新工藝、新方法不斷出現,包括有厭氧接觸法、升流式厭氧污泥床、檔板式厭氧法、厭氧生物濾池、厭氧膨脹床和流化床,以及第三代厭氧工藝EGSB和IC厭氧反應器,發展十分迅速。
而升流式厭氧污泥床UASB( Up-flow Anaerobic Sludge Bed,註:以下簡稱UASB)工藝由於具有厭氧過濾及厭氧活性污泥法的雙重特點,作為能夠將污水中的污染物轉化成再生清潔能源——沼氣的一項技術。對於不同含固量污水的適應性也強,且其結構、運行操作維護管理相對簡單,造價也相對較低,技術已經成熟,正日益受到污水處理業界的重視,得到廣泛的歡迎和應用。
本文試圖就UASB的運行機理和工藝特征以及UASB的設計啟動等方麵作一簡要闡述。
二、UASB的由來
1971年荷蘭瓦格寧根(Wageningen)農業大學拉丁格(Lettinga)教授通過物理結構設計,利用重力場對不同密度物質作用的差異,發明瞭三相分離器。使活性污泥停留時間與廢水停留時間分離,形成瞭上流式厭氧污泥床(UASB)反應器的雛型。1974年荷蘭CSM公司在其6m3反應器處理甜菜製糖廢水時,發現瞭活性污泥自身固定化機製形成的生物聚體結構,即顆粒污泥(granular sludge)。顆粒污泥的出現,不僅促進瞭以UASB為代表的第二代厭氧反應器的應用和發展,而且還為第三代厭氧反應器的誕生奠定瞭基礎。
三、UASB工作原理
UASB由污泥反應區、氣液固三相分離器(包括沉淀區)和氣室三部分組成。在底部反應區內存留大量厭氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥層。要處理的污水從厭氧污泥床底部流入與污泥層中污泥進行混合接觸,污泥中的微生物分解污水中的有機物,把它轉化為沼氣。沼氣以微小氣泡形式不斷放出,微小氣泡在上升過程中,不斷合並,逐漸形成較大的氣泡,在污泥床上部由於沼氣的攪動形成一個污泥濃度較稀薄的污泥和水一起上升進入三相分離器,沼氣碰到分離器下部的反射板時,折向反射板的四周,然後穿過水層進入氣室,集中在氣室沼氣,用導管導出,固液混合液經過反射進入三相分離器的沉淀區,污水中的污泥發生絮凝,顆粒逐漸增大,並在重力作用下沉降。沉淀至斜壁上的污泥沼著斜壁滑回厭氧反應區內,使反應區內積累大量的污泥,與污泥分離後的處理出水從沉淀區溢流堰上部溢出,然後排出污泥床。
基本出要求有:
(1)為污泥絮凝提供有利的物理、化學和力學條件,使厭氧污泥獲得並保持良好的沉淀性能;
(2)良好的污泥床常可形成一種相當穩定的生物相,保持特定的微生態環境,能抵抗較強的擾動力,較大的絮體具有良好的沉淀性能,從而提高設備內的污泥濃度;
(3)通過在污泥床設備內設置一個沉淀區,使污泥細顆粒在沉淀區的污泥層內進一步絮凝和沉淀,然後回流入污泥床內。
新手教學
批發市場僅提供代購諮詢服務,商品內容為廠商自行維護,若有發現不實、不合適或不正確內容,再請告知我們,查實即會請廠商修改或立即下架,謝謝。