2.無刷直流電動機
無刷直流電動機是采用半導體開關器件來實現電子換向的,即用電子開關器件代替傳統的接觸式換向器和電刷。它具有可靠性高、無換向火花、機械噪聲低等優點,廣泛應用於高檔錄音座、錄像機、電子機器及自動化辦公設備中。 無刷直流電動機由永磁體轉子、多極繞組定子、位置傳感器等組成。位置傳感按轉子位置的變化,沿著一定次序對定子繞組的電流進行換流(即檢測轉子磁極相對定子繞組的位置,並在確定的位置處產生位置傳感信號,經信號轉換電路處理後去控制功率開關電路,按一定的邏輯關系進行繞組電流切換)。定子繞組的工作電壓由位置傳感器輸出控制的電子開關電路提供。 位置傳感器有磁敏式、光電式和電磁式三種類型。
采用磁敏式位置傳感器的無刷直流電動機,其磁敏傳感器件(例如霍爾元件、磁敏二極管、磁敏詁極管、磁敏電阻器或專用集成電路等)裝在定子組件上,用來檢測永磁體、轉子旋轉時產生的磁場變化。 采用光電式位置傳感器的無刷直流電動機,在定子組件上按一定位置配置瞭光電傳感器件,轉子上裝有遮光板,光源為發光二極管或小燈泡。轉子旋轉時,由於遮光板的作用,定子上的光敏元器件將會按一定頻率間歇間生脈沖信號。 采用電磁式位置傳感器的無刷直流電動機,是在定子組件上安裝有電磁傳感器部件(例如耦合變壓器、接近開關、LC諧振電路等),當永磁體轉子位置發生變化時,電磁效應將使電磁傳感器產生高頻調制信號(其幅值隨轉子位置而變化)。2.1直流無刷電機的優越性 直流電機具有響應快速、較大的起動轉矩、從零轉速至額定轉速具備可提供額定轉矩的性能,但直流電機的優點也正是它的缺點,因為直流電機要產生額定負載下恒定轉矩的性能,則電樞磁場與轉子磁場須恒維持90°,這就要藉由碳刷及整流子。碳刷及整流子在電機轉動時會產生火花、碳粉因此除瞭會造成組件損壞之外,使用場合也受到限制。交流電機沒有碳刷及整流子,免維護、堅固、應用廣,但特性上若要達到相當於直流電機的性能須用復雜控制技術才能達到。現今半導體發展迅速功率組件切換頻率加快許多,提升驅動電機的性能。微處理機速度亦越來越快,可實現將交流電機控制置於一旋轉的兩軸直交坐標系統中,適當控制交流電機在兩軸電流分量,達到類似直流電機控制並有與直流電機相當的性能。 此外已有很多微處理機將控制電機必需的功能做在芯片中,而且體積越來越小;像模擬/數字轉換器(analog-to-digital converter,adc)、脈沖寬度調制(pulse wide modulator,pwm)…等。直流無刷電機即是以電子方式控制交流電機換相,得到類似直流電機特性又沒有直流電機機構上缺失的一種應用。2.2直流無刷電機的控制結構 直流無刷電機是同步電機的一種,也就是說電機轉子的轉速受電機定子旋轉磁場的速度及轉子極數(p)影響:n=120.f / p。在轉子極數固定情況下,改變定子旋轉磁場的頻率就可以改變轉子的轉速。直流無刷電機即是將同步電機加上電子式控制(驅動器),控制定子旋轉磁場的頻率並將電機轉子的轉速回授至控制中心反復校正,以期達到接近直流電機特性的方式。也就是說直流無刷電機能夠在額定負載范圍內當負載變化時仍可以控制電機轉子維持一定的轉速。 直流無刷驅動器包括電源部及控制部如圖(1):電源部提供三相電源給電機,控制部則依需求轉換輸入電源頻率。 電源部可以直接以直流電輸入(一般為24v)或以交流電輸入(110v/220 v),如果輸入是交流電就得先經轉換器(converter)轉成直流。不論是直流電輸入或交流電輸入要轉入電機線圈前須先將直流電壓由換流器(inverter)轉成3相電壓來驅動電機。換流器(inverter)一般由6個功率晶體管(q1~q6)分為上臂(q1、q3、q5)/下臂(q2、q4、q6)連接電機作為控制流經電機線圈的開關。控制部則提供pwm(脈沖寬度調制)決定功率晶體管開關頻度及換流器(inverter)換相的時機。直流無刷電機一般希望使用在當負載變動時速度可以穩定於設定值而不會變動太大的速度控制,所以電機內部裝有能感應磁場的霍爾傳感器(hall-sensor),作為速度之閉回路控制,同時也做為相序控制的依據。但這隻是用來做為速度控制並不能拿來做為定位控制。2.3直流無刷電機的控制原理
要讓電機轉動起來,首先控制部就必須根據hall-sensor感應到的電機轉子目前所在位置,然後依照定子繞線決定開啟(或關閉)換流器(inverter)中功率晶體管的順序,如下(圖二)inverter中之ah、bh、ch(這些稱為上臂功率晶體管)及al、bl、cl(這些稱為下臂功率晶體管),使電流依序流經電機線圈產生順向(或逆向)旋轉磁場,並與轉子的磁鐵相互作用,如此就能使電機順時/逆時轉動。當電機轉子轉動到hall-sensor感應出另一組信號的位置時,控制部又再開啟下一組功率晶體管,如此循環電機就可以依同一方向繼續轉動直到控制部決定要電機轉子停止則關閉功率晶體管(或隻開下臂功率晶體管);要電機轉子反向則功率晶體管開啟順序相反。 基本上功率晶體管的開法可舉例如下:ah、bl一組→ah、cl一組→bh、cl一組→bh、al一組→ch、al一組→ch、bl一組 但絕不能開成ah、al或bh、bl或ch、cl。此外因為電子零件總有開關的響應時間,所以功率晶體管在關與開的交錯時間要將零件的響應時間考慮進去,否則當上臂(或下臂)尚未完全關閉,下臂(或上臂)就已開啟,結果就造成上、下臂短路而使功率晶體管燒毀。 當電機轉動起來,控制部會再根據驅動器設定的速度及加/減速率所組成的命令(command)與hall-sensor信號變化的速度加以比對(或由軟件運算)再來決定由下一組(ah、bl或ah、cl或bh、cl或……)開關導通,以及導通時間長短。速度不夠則開長,速度過頭則減短,此部分工作就由pwm來完成。pwm是決定電機轉速快或慢的方式,如何產生這樣的pwm才是要達到較精準速度控制的核心。高轉速的速度控制必須考慮到系統的clock分辨率是否足以掌握處理軟件指令的時間,另外對於hall-sensor信號變化的資料存取方式也影響到處理器效能與判定正確性、實時性。至於低轉速的速度控制尤其是低速起動則因為回傳的hall-sensor信號變化變得更慢,怎樣擷取信號方式、處理時機以及根據電機特性適當配置控制參數值就顯得非常重要。或者速度回傳改變以encoder變化為參考,使信號分辨率增加以期得到更佳的控制。電機能夠運轉順暢而且響應良好,p.i.d.控制的恰當與否也無法忽視。之前提到直流無刷電機是閉回路控制,因此回授信號就等於是告訴控制部現在電機轉速距離目標速度還差多少,這就是誤差(error)。知道瞭誤差自然就要補償,方式有傳統的工程控制如p.i.d.控制。但控制的狀態及環境其實是復雜多變的,若要控制的堅固耐用則要考慮的因素恐怕不是傳統的工程控制能完全掌握,所以模糊控制、專傢系統及神經網絡也將被納入成為智能型p.i.d.控制的重要理論。
編輯本段交流異步電動機
無刷直流電動機
無刷直流電動機是采用半導體開關器件來實現電子換向的,即用電子開關器件代替傳統的接觸式換向器和電刷。它具有可靠性高、無換向火花、機械噪聲低等優點,廣泛應用於高檔錄音座、錄像機、電子機器及自動化辦公設備中。 無刷直流電動機由永磁體轉子、多極繞組定子、位置傳感器等組成。位置傳感按轉子位置的變化,沿著一定次序對定子繞組的電流進行換流(即檢測轉子磁極相對定子繞組的位置,並在確定的位置處產生位置傳感信號,經信號轉換電路處理後去控制功率開關電路,按一定的邏輯關系進行繞組電流切換)。定子繞組的工作電壓由位置傳感器輸出控制的電子開關電路提供。 位置傳感器有磁敏式、光電式和電磁式三種類型。
采用磁敏式位置傳感器的無刷直流電動機,其磁敏傳感器件(例如霍爾元件、磁敏二極管、磁敏詁極管、磁敏電阻器或專用集成電路等)裝在定子組件上,用來檢測永磁體、轉子旋轉時產生的磁場變化。 采用光電式位置傳感器的無刷直流電動機,在定子組件上按一定位置配置瞭光電傳感器件,轉子上裝有遮光板,光源為發光二極管或小燈泡。轉子旋轉時,由於遮光板的作用,定子上的光敏元器件將會按一定頻率間歇間生脈沖信號。 采用電磁式位置傳感器的無刷直流電動機,是在定子組件上安裝有電磁傳感器部件(例如耦合變壓器、接近開關、LC諧振電路等),當永磁體轉子位置發生變化時,電磁效應將使電磁傳感器產生高頻調制信號(其幅值隨轉子位置而變化)。2.1直流無刷電機的優越性 直流電機具有響應快速、較大的起動轉矩、從零轉速至額定轉速具備可提供額定轉矩的性能,但直流電機的優點也正是它的缺點,因為直流電機要產生額定負載下恒定轉矩的性能,則電樞磁場與轉子磁場須恒維持90°,這就要藉由碳刷及整流子。碳刷及整流子在電機轉動時會產生火花、碳粉因此除瞭會造成組件損壞之外,使用場合也受到限制。交流電機沒有碳刷及整流子,免維護、堅固、應用廣,但特性上若要達到相當於直流電機的性能須用復雜控制技術才能達到。現今半導體發展迅速功率組件切換頻率加快許多,提升驅動電機的性能。微處理機速度亦越來越快,可實現將交流電機控制置於一旋轉的兩軸直交坐標系統中,適當控制交流電機在兩軸電流分量,達到類似直流電機控制並有與直流電機相當的性能。 此外已有很多微處理機將控制電機必需的功能做在芯片中,而且體積越來越小;像模擬/數字轉換器(analog-to-digital converter,adc)、脈沖寬度調制(pulse wide modulator,pwm)…等。直流無刷電機即是以電子方式控制交流電機換相,得到類似直流電機特性又沒有直流電機機構上缺失的一種應用。2.2直流無刷電機的控制結構 直流無刷電機是同步電機的一種,也就是說電機轉子的轉速受電機定子旋轉磁場的速度及轉子極數(p)影響:n=120.f / p。在轉子極數固定情況下,改變定子旋轉磁場的頻率就可以改變轉子的轉速。直流無刷電機即是將同步電機加上電子式控制(驅動器),控制定子旋轉磁場的頻率並將電機轉子的轉速回授至控制中心反復校正,以期達到接近直流電機特性的方式。也就是說直流無刷電機能夠在額定負載范圍內當負載變化時仍可以控制電機轉子維持一定的轉速。 直流無刷驅動器包括電源部及控制部如圖(1):電源部提供三相電源給電機,控制部則依需求轉換輸入電源頻率。 電源部可以直接以直流電輸入(一般為24v)或以交流電輸入(110v/220 v),如果輸入是交流電就得先經轉換器(converter)轉成直流。不論是直流電輸入或交流電輸入要轉入電機線圈前須先將直流電壓由換流器(inverter)轉成3相電壓來驅動電機。換流器(inverter)一般由6個功率晶體管(q1~q6)分為上臂(q1、q3、q5)/下臂(q2、q4、q6)連接電機作為控制流經電機線圈的開關。控制部則提供pwm(脈沖寬度調制)決定功率晶體管開關頻度及換流器(inverter)換相的時機。直流無刷電機一般希望使用在當負載變動時速度可以穩定於設定值而不會變動太大的速度控制,所以電機內部裝有能感應磁場的霍爾傳感器(hall-sensor),作為速度之閉回路控制,同時也做為相序控制的依據。但這隻是用來做為速度控制並不能拿來做為定位控制。2.3直流無刷電機的控制原理 要讓電機轉動起來,首先控制部就必須根據hall-sensor感應到的電機轉子目前所在位置,然後依照定子繞線決定開啟(或關閉)換流器(inverter)中功率晶體管的順序,如下(圖二)inverter中之ah、bh、ch(這些稱為上臂功率晶體管)及al、bl、cl(這些稱為下臂功率晶體管),使電流依序流經電機線圈產生順向(或逆向)旋轉磁場,並與轉子的磁鐵相互作用,如此就能使電機順時/逆時轉動。當電機轉子轉動到hall-sensor感應出另一組信號的位置時,控制部又再開啟下一組功率晶體管,如此循環電機就可以依同一方向繼續轉動直到控制部決定要電機轉子停止則關閉功率晶體管(或隻開下臂功率晶體管);要電機轉子反向則功率晶體管開啟順序相反。 基本上功率晶體管的開法可舉例如下:ah、bl一組→ah、cl一組→bh、cl一組→bh、al一組→ch、al一組→ch、bl一組 但絕不能開成ah、al或bh、bl或ch、cl。此外因為電子零件總有開關的響應時間,所以功率晶體管在關與開的交錯時間要將零件的響應時間考慮進去,否則當上臂(或下臂)尚未完全關閉,下臂(或上臂)就已開啟,結果就造成上、下臂短路而使功率晶體管燒毀。 當電機轉動起來,控制部會再根據驅動器設定的速度及加/減速率所組成的命令(command)與hall-sensor信號變化的速度加以比對(或由軟件運算)再來決定由下一組(ah、bl或ah、cl或bh、cl或……)開關導通,以及導通時間長短。速度不夠則開長,速度過頭則減短,此部分工作就由pwm來完成。pwm是決定電機轉速快或慢的方式,如何產生這樣的pwm才是要達到較精準速度控制的核心。高轉速的速度控制必須考慮到系統的clock分辨率是否足以掌握處理軟件指令的時間,另外對於hall-sensor信號變化的資料存取方式也影響到處理器效能與判定正確性、實時性。至於低轉速的速度控制尤其是低速起動則因為回傳的hall-sensor信號變化變得更慢,怎樣擷取信號方式、處理時機以及根據電機特性適當配置控制參數值就顯得非常重要。或者速度回傳改變以encoder變化為參考,使信號分辨率增加以期得到更佳的控制。電機能夠運轉順暢而且響應良好,p.i.d.控制的恰當與否也無法忽視。之前提到直流無刷電機是閉回路控制,因此回授信號就等於是告訴控制部現在電機轉速距離目標速度還差多少,這就是誤差(error)。知道瞭誤差自然就要補償,方式有傳統的工程控制如p.i.d.控制。但控制的狀態及環境其實是復雜多變的,若要控制的堅固耐用則要考慮的因素恐怕不是傳統的工程控制能完全掌握,所以模糊控制、專傢系統及神經網絡也將被納入成為智能型p.i.d.控制的重要理論。
編輯本段交流異步電動機
交流異步電動機是領先交流電壓運行的電動機,廣泛應用於電風扇、電冰箱、洗衣機、空調器、電吹風、吸塵器、油煙機、洗碗機、電動縫紉機、食品加工機等傢用電器及各種電動工具、小型機電設備中。 交流電異步電動機分為感應電動機和交流換向器電動機。感應電動機又分為單相異步電動機、交直流兩用電動機和推斥電動機。 電機的轉速(轉子轉速)小於旋轉磁場的轉速,從而叫為異步電機。它和感應電機基本上是相同的。s=(ns-n)/ns。s為轉差率,ns為磁場轉速,n為轉子轉速。 基本原理:(1)當三相異步電機接入三相交流電源時,三相定子繞組流過三相對稱電流產生的三相磁動勢(定子旋轉磁動勢)並產生旋轉磁場。(2)該旋轉磁場與轉子導體有相對切割運動,根據電磁感應原理,轉子導體產生感應電動勢並產生感應電流。 (3)根據電磁力定律,載流的轉子導體在磁場中受到電磁力作用,形成電磁轉矩,驅動轉子旋轉,當電動機軸上帶機械負載時,便向外輸出機械能。 異步電機是一種交流電機,其負載時的轉速與所接電網的頻率之比不是恒定關系。還隨著負載的大小發生變化。負載轉矩越大,轉子的轉速越低。異步電機包括感應電機、雙饋異步電機和交流換向器電機。感應電機應用最廣,在不致引起誤解或混淆的情況下,一般可稱感應電機為異步電機。 普通異步電機的定子繞組接交流電網,轉子繞組不需與其他電源連接。因此,它具有結構簡單,制造、使用和維護方便,運行可靠以及質量較小,成本較低等優點。異步電機有較高的運行效率和較好的工作特性,從空載到滿載范圍內接近恒速運行,能滿足大多數工農業生產機械的傳動要求。異步電機還便於派生成各種防護型式,以適應不同環境條件的需要。異步電機運行時,必須從電網吸取無功勵磁功率,使電網的功率因數變壞。因此,對驅動球磨機、壓縮機等大功率、低轉速的機械設備,常采用同步電機。由於異步電機的轉速與其旋轉磁場轉速有一定的轉差關系,其調速性能較差(交流換向器電動機除外)。對要求較寬廣和平滑調速范圍的交通運輸機械、軋機、大型機床、印染及造紙機械等,采用直流電機較經濟、方便。但隨著大功率電子器件及交流調速系統的發展,目前適用於寬調速的異步電機的調速性能及經濟性已可與直流電機的相媲美。、直流發電機工作原理 直流電機實圖
直流發電機的工作原理就是把電樞線圈中感應的交變電動勢,靠換向器配合電刷的換向作用,使之從電刷端引出時變為直流電動勢的原理。 感應電動勢的方向按右手定則確定(磁感線指向手心,大拇指指向導體運動方向,其他四指的指向就是導體中感應電動勢的方向。) 在圖1.1所示瞬間,導體a b、c d的感應電動勢方向分別由b指向a和由d指向c。這時電刷A呈正極性,電刷B呈負極性。 圖1.1直流發電機原理模型 當線圈逆時針方向旋轉180°時,這時導體c d位於N極下,導體a b位於S極下,各導體中電動勢都分別改變瞭方向。 圖1.2直流發電機原理模型 從圖看出,和電刷A接觸的導體永遠位於N極下,同樣,和電刷B接觸的導體永遠位於S極下。因此,電刷A始終有正極性,電刷B始終有負極性,所以電刷端能引出方向不變的但大小變化的脈振電動勢。如果電樞上線圈數增多,並按照一定的規律把它們連接起來,可使脈振程度減小,就可獲得直流電動勢。這就是直流發電機的工作原理。 二、直流電動機的工作原理 導體受力的方向用左手定則確定。這一對電磁力形成瞭作用於電樞一個力矩,這個力矩在旋轉電機裡稱為電磁轉矩,轉矩的方向是逆時針方向,企圖使電樞逆時針方向轉動。如果此電磁轉矩能夠克服電樞上的阻轉矩(例如由摩擦引起的阻轉矩以及其它負載轉矩),電樞就能按逆時針方向旋轉起來。 圖1.3直流電動機的原理模型 當電樞轉瞭180°後,導體cd轉到N極下,導體ab轉到S極下時,由於直流電源供給的電流方向不變,仍從電刷A流入,經導體cd、ab後,從電刷B流出。這時導體cd受力方向變為從右向左,導體ab受力方向是從左向右,產生的電磁轉矩的方向仍為逆時針方向。 圖1.4直流電動機原理模型 因此,電樞一經轉動,由於換向器配合電刷對電流的換向作用,直流電流交替地由導體ab和cd流入,使線圈邊隻要處於N極下,其中通過電流的方向總是由電刷A流入的方向,而在S極下時,總是從電刷B流出的方向。這就保證瞭每個極下線圈邊中的電流始終是一個方向,從而形成一種方向不變的轉矩,使電動機能連續地旋轉。這就是直流電動機的工作原理。
直流電機的原理結構
直流電動機是依靠直流工作電壓運行的電動機,廣泛應用於收錄機、錄像機、影碟機、電動剃須刀、電吹風、電子表、玩具等。1.電磁式直流電動機電磁式直流電動機由定子磁極、轉子(電樞)、換向器(俗稱整流子)、電刷、機殼、軸承等構成, 電磁式直流電動機的定子磁極(主磁極)由鐵心和勵磁繞組構成。根據其勵磁(舊標準稱為激磁)方式的不同又可分為串勵直流電動機、並勵直流電動機、他勵直流電動機和復勵直流電動機。因勵磁方式不同,定子磁極磁通(由定子磁極的勵磁線圈通電後產生)的規律也不同。 串勵直流電動機的勵磁繞組與轉子繞組之間通過電刷和換向器相串聯,勵磁電流與電樞電流成正比,定子的磁通量隨著勵磁電流的增大而增大,轉矩近似與電樞電流的平方成正比,轉速隨轉矩或電流的增加而迅速下降。其起動轉矩可達額定轉矩的5倍以上,短時間過載轉矩可達額定轉矩的4倍以上,轉速變化率較大,空載轉速甚高(一般不允許其在空載下運行)。可通過用外用電阻器與串勵繞組串聯(或並聯)、或將串勵繞組並聯換接來實現調速。 並勵直流電動機的勵磁繞組與轉子繞組相並聯,其勵磁電流較恒定,起動轉矩與電樞電流成正比,起動電流約為額定電流的2.5倍左右。轉速則隨電流及轉矩的增大而略有下降,短時過載轉矩為額定轉矩的1.5倍。轉速變化率較小,為5%~15%。可通過消弱磁場的恒功率來調速。 他勵直流電動機的勵磁繞組接到獨立的勵磁電源供電,其勵磁電流也較恒定,起動轉矩與電樞電流成正比。轉速變化也為5%~15%。可以通過消弱磁場恒功率來提高轉速或通過降低轉子繞組的電壓來使轉速降低。 復勵直流電動機的定子磁極上除有並勵繞組外,還裝有與轉子繞組串聯的串勵繞組(其匝數較少)。串聯繞組產生磁通的方向與主繞組的磁通方向相同,起動轉矩約為額定轉矩的4倍左右,短時間過載轉矩為額定轉矩的3.5倍左右。轉速變化率為25%~30%(與串聯繞組有關)。轉速可通過消弱磁場強度來調整。 換向器的換向片使用銀銅、鎘銅等合金材料,用高強度塑料模壓成。電刷與換向器滑動接觸,為轉子繞組提供電樞電流。電磁式直流電動機的電刷一般采用金屬石墨電刷或電化石墨電刷。轉子的鐵心采用矽鋼片疊壓而成,一般為12槽,內嵌12組電樞繞組,各繞組間串聯接後,再分別與12片換向片連接。
1、電器操作簡要:
流水線的電源需要三相四線,外麵裝有總開關一個,(可用三相四線四極開關,也可用開關隻控制三相電源,零線直接,註意切不可將第二種接法的零線也經過另外一個開關)。配電箱的N接零線,A, B, C接電源的三相電源,U, V, W接電動機,3,4接調速電機的F1, F2。5,6,7接調速電機的u,v,w。
2、啟動電動機的方法:
先接通電源,此時三盞電源指示燈全部都會亮,證明三相電源已經到配電箱。此時可以按一下電機開的藍色按鈕,就可啟動電機,假如不能啟動,可以打開配電箱門,看一下第一排的第二個DZ108開關,是否是紅的長,藍的短。如果不是將此藍色的壓下去就可。電動機啟動後,然後打開流水線調速表的開關,再將調速表的電位器慢慢向上調,使轉速表達到想要的速度。關機時先將調速表的電位器慢慢向下調到零,然後關閉調速表的開關,再按一下電機關的紅色按鈕,就可停止電機。最後將總開關關閉。
批發市場僅提供代購諮詢服務,商品內容為廠商自行維護,若有發現不實、不合適或不正確內容,再請告知我們,查實即會請廠商修改或立即下架,謝謝。